Improved Language Modeling for English-Persian Statistical Machine Translation

نویسندگان

  • Mahsa Mohaghegh
  • Abdolhossein Sarrafzadeh
  • Tom Moir
چکیده

As interaction between speakers of different languages continues to increase, the everpresent problem of language barriers must be overcome. For the same reason, automatic language translation (Machine Translation) has become an attractive area of research and development. Statistical Machine Translation (SMT) has been used for translation between many language pairs, the results of which have shown considerable success. The focus of this research is on the English/Persian language pair. This paper investigates the development and evaluation of the performance of a statistical machine translation system by building a baseline system using subtitles from Persian films. We present an overview of previous related work in English/Persian machine translation, and examine the available corpora for this language pair. We finally show the results of the experiments of our system using an in-house corpus and compare the results we obtained when building a language model with different sized monolingual corpora. Different automatic evaluation metrics like BLEU, NIST and IBM-BLEU were used to evaluate the performance of the system on half of the corpus built. Finally, we look at future work by outlining ways of getting highly accurate translations as fast as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

Extracting Persian-English Parallel Sentences from Document Level Aligned Comparable Corpus using Bi-Directional Translation

Bilingual parallel corpora are very important in various filed of natural language processing (NLP). The quality of a Statistical Machine Translation (SMT) system strongly dependent upon the amount of training data. For low resource language pairs such as Persian-English, there are not enough parallel sentences to build an accurate SMT system. This paper describes a new approach to use the Wiki...

متن کامل

Persian-Spanish Low-Resource Statistical Machine Translation Through English as Pivot Language

This paper is an attempt to exclusively focus on investigating the pivot language technique in which a bridging language is utilized to increase the quality of the Persian–Spanish low-resource Statistical Machine Translation (SMT). In this case, English is used as the bridging language, and the Persian–English SMT is combined with the English–Spanish one, where the relatively large corpora of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010